C[Tvf Лечение Кальцивироза

Генная терапия

Генная терапия – это лечение наследственных, ненаследственных, мультифакториальных заболеваний, которое осуществляется путем введения в клетки пациента других генов. Целью терапии является устранение генных дефектов либо придание клеткам новых функций. Намного проще ввести в клетку здоровый, полноценно работающий ген, чем исправлять дефекты в имеющемся.

Генная терапия ограничивается исследованиями в соматических тканях. Это связано с тем, что любое вмешательство в половые и зародышевые клетки может дать совершенно непредсказуемый результат.

Применяемая в настоящее время методика эффективна при лечении как моногенных, так и мультифакториальных заболеваний (злокачественные опухоли, некоторые виды тяжелых сердечно-сосудистых, вирусных заболеваний).

Около 80% всех проектов генной терапии касаются ВИЧ-инфекции и онкологических заболеваний. В настоящее время ведутся исследования таких наследственных болезней, как гемофилия В, болезнь Гоше, муковисцидоз, гиперхолестеринемия.

· выделение и размножение отдельных типов клеток пациента;

· введение чужеродных генов;

· отбор клеток, в которых «прижился» чужеродный ген;

· вживление их больному (например, посредством переливания крови).

Генная терапия основывается на введении клонированных ДНК в ткани больного. Самыми эффективными методами при этом считаются инъекционные и аэрозольные вакцины.

Генная терапия работает в двух направлениях:

1. Лечение моногенных заболеваний. К ним относятся нарушения в работе головного мозга, которые связаны с какими-либо повреждениями клеток, которые вырабатывают нейромедиаторы.

2. Лечение наследственных заболеваний. Основные подходы, использующиеся в данной области:

· генетическое усовершенствование иммунных клеток;

· повышение иммунореактивности опухоли;

· блок экспрессии онкогенов;

· защита здоровых клеток от химиотерапии;

· ввод генов-супрессоров опухоли;

· производство противоопухолевых веществ здоровыми клетками;

· продукция противоопухолевых вакцин;

· локальное воспроизведение нормальных тканей при помощи антиоксидантов.

Использование генной терапии имеет много плюсов и в некоторых случаях является единственным шансом на нормальную жизнь для больных людей. Тем не менее, эта область науки до конца не изучена. Существует международный запрет на испытания на половых и доимплантационных зародышевых клетках. Это сделано с целью предотвращения нежелательных генных конструкций и мутаций.

Разработаны и общепризнанны некоторые условия, при которых допускаются клинические испытания:

Ген, перенесенный в клетки-мишени, должен быть активен продолжительное время.

В чужеродной среде ген должен сохранять свою эффективность.

Перенос гена не должен вызывать негативных реакций в организме.

Существует ряд вопросов, которые и сегодня остаются актуальными для многих ученых по всему миру:

Смогут ли ученые, работающие в области генной терапии, разработать полную генокоррекцию, которая не будет представлять угрозы потомству?

Будет ли необходимость и полезность генотерапевтической процедуры для отдельной супружеской пары превосходить риск этого вмешательства для будущего человечества?

Оправданы ли подобные процедуры, учитывая перенаселение планеты в будущем?

Каким образом будут соотноситься подобные процедуры на человеке с вопросами гомеостаза биосферы и общества?

В заключении можно отметить, что генетическая терапия на современном этапе предлагает человечеству пути лечения самых тяжелых заболеваний, которые совсем недавно считались неизлечимыми и смертельными. Однако, в то же время, развитие этой науки ставит перед учеными новые проблемы, которые необходимо решать уже сегодня.

Будет ли необходимость и полезность генотерапевтической процедуры для отдельной супружеской пары превосходить риск этого вмешательства для будущего человечества?

Отзыв: Раствор для инъекций «Никотиновая кислота» — Расширяет и чистит сосуды, ускоряет обмен веществ.

Честно говоря, сегодня сделала для себя открытие, решив написать отзыв про никотиновую кислоту. Всегда использую этот препарат как сосудистый, теперь узнала, что это отличное средство для роста волос.
Однако, с этой стороны, я с ним незнакома, поэтому о своем, о сосудистом.
Проделав сейчас в межсезонье, когда особенно беспокоят ВСД и нарушения мозгового кровообращения, инъекции «Мексидола» Мой отзыв о препарате «Мексидол» и «Кавинтона», решила чем-нибудь закрепить результат.
И тут вспомнила о старой доброй «Никотиновой кислоте». Часто мы как-то упускаем из вида дешевый отечественные лекарства. А, между тем, это просто отличный препарат.

Никотиновая кислота — витамин РР, который стимулирует кровообращение, мозговую деятельность, нормализует обмен веществ.
Помимо этого препарат снимает спазмы сосудов и способствует их расширению, снижает содержание холестерина, липопротеина, триглицерида.
В общем, хороший витаминчик, способный делать большие добрые дела.
При этом стоит просто копейки.
Можно провести курс лечения таблетками, но я предпочитаю внутримышечные инъекции. Тем более, что давно научилась ставить себе уколы сама, так что для меня это не проблема.
Вспомнила схему, которую мне когда-то назначала невропатолог.
От 1 мл по нарастающей до 5 мл и в обратном порядке по убывающей.
Таким образом мне понадобилось 3 коробки «Никотиновой кислоты» в ампулах по 10 штук по 1мл. Каждая коробка стоит 21 рубль.

3 коробки соответственно 63 рубля. Плюс шприцы объемом от 2 до 5 кубиков. Итого, уложилась в сто рублей для 10-дневного курса лечения.
Главны побочный эффект при инъекциях витамина PP — это покраснение кожи, пощипывание, прилив жара, возможна сыпь. Такая реакция на никотинку считается нормальной и проходит через 15-20 минут после инъекции.

На собственном опыте могу сказать, что введение 1 мл раствора для меня проходит незамеченным. На 2 мл реакция небольшая. Потом, если повышать дозу лекарства, то реакция организма, становится более заметной, но особых проблем не вызывает. Просто нужно переждать.
Если есть возможность, стараюсь полежать минут 15.
Хочется еще отметить, что благодаря своему действию на обменные процессы, препарат полезен для коррекции веса. Он помогает очистить сосуды, вывести токсины и тяжелые металлы.

Единственный для меня недостаток, не очень удобно вскрывать такие ампулы. Но, уже наловчилась. Даже не подпиливаю, просто обламываю кончик ампулы, используя кусочек ваты, чтобы не поранится.
Знаю, что есть более практичные апмпулы с насечкой, но мне пока не попадались.
У «Никотиновой кислоты» практически нет противопоказаний. главное, ее нельзя вводить при гипертонии внутривенно. Хотя, естественно, как при назначении любого лекарственного средства, нужна консультация специалиста. Тем более, что существуют разные схемы приема препарата.
Но препарат очень достойный и, однозначно, заслуживает внимания.

На собственном опыте могу сказать, что введение 1 мл раствора для меня проходит незамеченным. На 2 мл реакция небольшая. Потом, если повышать дозу лекарства, то реакция организма, становится более заметной, но особых проблем не вызывает. Просто нужно переждать.
Если есть возможность, стараюсь полежать минут 15.
Хочется еще отметить, что благодаря своему действию на обменные процессы, препарат полезен для коррекции веса. Он помогает очистить сосуды, вывести токсины и тяжелые металлы.

+ О справочнике

+ Средства лечения

Алфавитный указатель:

Схема последующей (после применения стрептокиназы) антикоагулянтной терапии

Таблица 26. Схема последующей (после применения стрептокиназы) антикоагулянтной терапии

Рекомендуем прочесть:  Может у собаки сводит лапы от нехватки витаминов
Гепарин и производные кумарина
10 000 ЕД гепарина внутвенно капель Продолжение введения гепарина внутривенно капельно под контролем тромбинового времени (индекса) Продолжение введения гепарина внутривенно капельно иод коптролем тромбинового времени (индекса) Продолжение антикоагулянтной терапии производными кумарина под-контролем протромбинового индекса

Часы

12 24
48
Тромбиновое время должно быть удлинено (индекс уменьшен) не менее чем в 3 раза Протромбиновый индекс должен быть ниже исходного в 2—3 раза

Вся информация на сайте включая рецепты размещена и распространяется в виде «как есть» и не стимулирует Вас к каким-либо действиям. Администрация сайта не несет ответственности за правильность описания лекарственных средств и рецептов, один неправильно определенный симптом, может привести к ошибке. Настоятельно рекомендуем проконсультироваться с врачом.

Алфавитный указатель:

Публикации: Медицина и фармакология (рубрикатор)

Генная терапия, или как загнать ДНК в клетку и вылечить этим пациентов

of your page —>
Tweet

Введение

С каждым годом в научных журналах появляется всё больше статей о медицинских клинических исследованиях, в которых, так или иначе, применялось лечение, основанное на введении различных генов – генная терапия. Это направление выросло из таких хорошо развивающихся разделов биологии, как молекулярная генетика и биотехнология.

Зачастую, когда обычные (консервативные) методы уже перепробованы, именно генная терапия может помочь пациентам выжить и даже полностью выздороветь. Например, это касается наследственных моногенных заболеваний, то есть таких, которые вызваны дефектом в одном-единственном гене, а также и многих других [1]. Или, к примеру, генная терапия может выручить и спасти конечность тем больным, у которых сужен просвет сосудов в нижних конечностях и вследствие этого развилась стойкая ишемия окружающих тканей, то есть эти ткани испытывают сильный недостаток питательных веществ и кислорода, которые в норме разносятся кровью по организму [2]. Хирургическими манипуляциями и лекарствами таких пациентов лечить зачастую не получается, зато если локально заставить клетки выбрасывать наружу больше белковых факторов, которые повлияли бы на процесс образования и прорастания новых сосудов, то ишемия стала бы гораздо менее выраженной и жить больным станет гораздо легче.

Генную терапию сегодня можно определить как лечение заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты совсем недавно – 22 мая 1989 года в целях диагностики рака. Первым наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит [3].

С каждым годом число успешно проведенных клинических испытаний лечения различных заболеваний с использованием генной терапии растёт, и к январю 2020 г. достигло 2 тысяч [4].

Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или «перетасованными» (рекомбинантными) ДНК in vivo (лат. буквально «в живом») изучены недостаточно. В странах с наиболее продвинутым уровнем исследований в этой области, особенно в США, медицинские протоколы с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and Drug Administration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health) [3].

Итак, мы определились, что данное лечение основано на том, что если какие-то ткани организма испытывают недостаток некоторых отдельных белковых факторов, то это можно исправить введением в эти ткани соответствующих генов, кодирующих белки, и всё станет более или менее замечательно. Сами белки вводить не получится, потому что наш организм тут же среагирует неслабой иммунной реакцией, да и длительность действия была бы недостаточной. Теперь следует определиться с методом доставки гена в клетки.

Трансфекция клеток

Для начала стоит ввести определения некоторых терминов.

Транспорт генов осуществляется благодаря вектору – это молекула ДНК, используемая как «транспортное средство» для искусственного переноса генетической информации в клетку. Выделяют множество разновидностей векторов: плазмидные, вирусные, а также космиды, фазмиды, искусственные хромосомы и т.д. Принципиально важно, что векторы (в частности, плазмидные) обладают характерными для них свойствами:

1. Точка начала репликации (ori) – последовательность нуклеотидов, с которой начинается удвоение ДНК. Если векторная ДНК не сможет удваиваться (реплицироваться), то необходимый лечебный эффект не будет достигнут, потому что она просто быстро расщепится внутриклеточными ферментами-нуклеазами, а из-за недостатка матриц будет в итоге образовано гораздо меньше молекул белка. Следует отметить, что эти точки специфичны для каждого биологического вида, то есть если векторную ДНК предполагается получать путём её размножения в культуре бактерий (а не просто химическим синтезом, что обычно гораздо дороже), то потребуются отдельно две точки начала репликации – для человека и для бактерий;

2. Сайты рестрикции – специфические короткие последовательности (чаще палиндромные), которые узнаются специальными ферментами (эндонуклеазы рестрикции) и разрезаются ими определённым образом – с образованием «липких концов» (рис.1).

Рис.1 Образование «липких концов» с участием рестриктаз

Эти сайты необходимы для того, чтобы сшить векторную ДНК (которая, по сути, является «болванкой») с нужными терапевтическими генами в единую молекулу. Такая сшитая из двух или нескольких частей молекула зовётся «рекомбинантной»;

3. Понятно, что нам желательно бы получить миллионы копий рекомбинантной молекулы ДНК. Опять-таки, если мы имеем дело с культурой клеток бактерий, то далее эту ДНК нужно выделить. Проблема заключается в том, что далеко не все бактерии проглотят нужную нам молекулу, некоторые не станут этого делать. Чтобы эти две группы всё-таки различить, в векторную ДНК вставляют селективные маркёры – участки устойчивости к определённым химическим веществам; теперь если в среду добавить эти самые вещества, то выживут только те, которые обладают устойчивостью к ним, а остальные погибнут.

Все эти три составляющие можно наблюдать и в самой первой искусственно синтезированной плазмиде (рис.2).

Сам процесс внедрения плазмидного вектора в определённые клетки называется трансфекцией. Плазмида – это довольно короткая и обычно кольцевая молекула ДНК, которая находится в цитоплазме бактериальной клетки. Плазмиды не связаны с бактериальной хромосомой, они могут реплицироваться независимо от нее, могут выбрасываться бактерией в окружающую среду или, наоборот, поглощаться (процесс поглощения – трансформация). С помощью плазмид бактерии могут обмениваться генетической информацией, например, передавать устойчивость к определённым антибиотикам.

Плазмиды существуют в бактериях в естественных условиях. Но никто не может помешать исследователю искусственно синтезировать плазмиду, которая будет обладать нужными для него свойствами, вшить в нее ген-вставку и внедрить в клетку. В одну и ту же плазмиду можно вшивать разные вставки [5].

Методы генной терапии

Существует два основных подхода, различающиеся природой клеток-мишеней:

1. Фетальная, при которой чужеродную ДНК вводят в зиготу (оплодотворённую яйцеклетку) или эмбрион на ранней стадии развития; при этом ожидается, что введённый материал попадёт во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению). В нашей стране она фактически запрещена [6];

Рекомендуем прочесть:  Патологии Кожи Животных

2. Соматическая, при которой генетический материал вводят уже родившемуся в неполовые клетки и он не передаётся половым клеткам.

Генная терапия in vivo основана на прямом введении клонированных (размноженных) и определенным образом упакованных последовательностей ДНК в определённые ткани больного. Особенно перспективным для лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения лёгочных заболеваний (муковисцидоз, рак легких).

Разработке программы генной терапии предшествует много этапов. Это и тщательный анализ тканеспецифической экспрессии соответствующего гена (т. е., синтеза на матрице гена какого-то белка в определённой ткани), и идентификация первичного биохимического дефекта, и исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Важно, что при составлении схем коррекции генов оценивается эффективность трансфекции, степень исправления первичного биохимического дефекта в условиях клеточных культур (in vitro, «в пробирке») и, что особенно важно, in vivo на животных – биологических моделях. Только после этого можно приступать к программе клинических испытаний [7].

Прямая доставка и клеточные носители терапевтических генов

Существует множество методов внедрения чужеродной ДНК в эукариотическую клетку: некоторые зависят от физической обработки (электропорация, магнетофекция и т.д.), другие – от применения химических материалов или биологических частиц (например, вирусов), которые используются как переносчики. Сразу стоит оговориться, что обычно комбинируются химические и физические методы (например, электропорация + окутывание ДНК липосомами)

1. Трансфекция на химической основе может быть классифицирована на несколько видов: с использованием вещества циклодекстрина, полимеров, липосом или наночастиц (с или без химической или вирусной функционализации, т.е. модификации поверхности).
а) Один из самых дешевых методов – использование фосфата кальция. Он повышает эффективность включения ДНК в клетки в 10-100 раз. ДНК образует с кальцием прочный комплекс, что обеспечивает его эффективное поглощение. Недостаток – ядра достигает всего около 1 – 10% ДНК. Метод используется in vitro для переноса ДНК в клетки человека (рис.3);

б) Применение сильноразветвленных органических молекул – дендример, для связывания ДНК и переноса её в клетку (рис.4);

в) Очень эффективным методом для трансфекции ДНК является внедрение её через липосомы – малые, окруженные мембраной тельца, которые могут сливаться с клеточной цитоплазматической мембраной (ЦПМ), представляющая собой двойной слой из липидов. Для эукариотических клеток трансфекция производится эффективнее с применением катионных липосом, потому что клетки к ним более чувствительны. Процесс имеет своё название – липофекция. Этот метод сегодня считается одним из самых безопасных. Липосомы нетоксичны и неиммуногенны. Однако, эффективность переноса генов с помощью липосом ограничена, поскольку внесенная ими ДНК в клетках обычно сразу же захватывается лизосомами и разрушается. Введение ДНК в клетки человека с помощью липосом сегодня является главным при терапии in vivo (рис.5);

г) Еще один метод – использование катионных полимеров, таких как диэтиламиноэтил–декстран или полиэтиленимин. Отрицательно заряженные молекулы ДНК связываются с положительно заряженными поликатионами, и этот комплекс далее проникает в клетку путём эндоцитоза. ДЭАЭ-декстран изменяет физические свойства плазматической мембраны и стимулирует поглощение этого комплекса клеткой. Главный недостаток метода заключается в том, что ДЭАЭ-декстран в высоких концентрациях токсичен. Метод не получил распространения в генотерапии;

д) С помощью гистонов и других ядерных белков [8]. Эти белки, содержащие много положительно заряженных аминокислот (Lys, Arg), в естественных условиях помогают компактно уложить длинную цепь ДНК в сравнительно небольшое ядро клетки.

2. Физические методы:

а) Электропорация – очень популярный метод; мгновенное повышение проницаемости мембраны достигается за счет того, что клетки подвергаются коротким воздействиям интенсивного электрического поля. Показано, что в оптимальных условиях количество трансформантов может достигать 80% выживших клеток. На человеке на сегодняшний день не используется (рис.6).

б) «Cell squeezing» – метод, изобретенный в 2020 г. Он позволяет доставить молекулы в клетки путём «мягкого сдавливания» клеточной мембраны. Метод исключает возможность токсичности или неправильного попадания по мишени, так как он не зависит от внешних материалов или электрических полей;

в) Сонопорация – метод искусственного переноса чужеродных ДНК в клетки с помощью воздействия на них ультразвуком, вызывающим открывание пор в клеточной мембране;
г) Оптическая трансфекция – метод, при котором производится крошечное отверстие в мембране (около 1 мкм в диаметре) при использовании сильносфокусированного лазера;
д) Гидродинамическая трансфекция – метод доставки генетических конструкций, белков и т.д. путем контролируемого повышения давления в капиллярах и межклеточной жидкости, что вызывает кратковременное повышение проницаемости клеточных мембран и образование в них временных пор. Осуществляется быстрой инъекцией в ткань, доставка при этом является неспецифичной. Эффективность доставки для скелетной мышцы – от 22 до 60% [9];

е) Микроинъекция ДНК – введение в ядро клетки животных с помощью тонких стеклянных микротрубочек (d=0,1-0,5 мкм). Недостаток – сложность метода, высока вероятность разрушения ядра либо ДНК; можно трансформировать ограниченное число клеток. Не используется для человека.

3. Методы на основе частиц.

а) Прямой подход к трансфекции – генная пушка, при этом ДНК сцепляют в наночастицу с инертными твердыми веществами (чаще золото, вольфрам), которая затем «выстреливает» направленно в ядра клеток-мишеней. Этот метод применяется in vitro и in vivo для введения генов, в частности, в клетки мышечных тканей, например при таком заболевании, как миодистрофия Дюшена. Размеры частиц золота – 1-3 мкм (рис.7).

б) Магнитофекция — метод, использующий силы магнетизма для доставки ДНК в клетки-мишени. Сначала нуклеиновые кислоты (НК) ассоциируются с магнитными наночастицами, а далее, под действием магнитного поля, частицы загоняются в клетку. Эффективность почти 100%-ная, отмечена явная нетоксичность. Уже через 10-15 мин частицы регистрируются в клетке – это гораздо быстрее других методик.
в) Импалефекция (impalefection; «impalement», букв. «сажание на кол» + «infection») – метод доставки с применением наноматериалов, таких как углеродные нанотрубки и нановолокна. При этом клетки буквально протыкаются подстилкой из нанофибрилл [10]. Приставка «нано» применяется для обозначения их очень маленьких размеров (в пределах миллиардных долей метра) (рис.8).

Отдельно стоит выделить такой метод, как РНК-трансфекция: в клетку доставляется не ДНК, а молекулы РНК – их «преёмники» в цепи биосинтеза белка; при этом активизируются специальные белки, разрезающие РНК на короткие фрагменты — т.н. малые интерферирующих РНК (миРНК). Эти фрагменты связываются с другими белками и, в конце концов, это приводит к угнетению экспрессии клеткой соответствующих генов. Таким образом можно заблокировать в клетке действие тех генов, которые потенциально на данный момент приносят больше вреда, чем пользы. Широкое применение РНК-трансфекция нашла, в частности, в онкологии.

Рекомендуем прочесть:  Почему у кошки при закапывании в уши текут слюни

Основные принципы доставки генов с использованием плазмидных векторов рассмотрены. Теперь можно перейти к рассмотрению вирусных методов. Вирусы – это неклеточные формы жизни, чаще всего представляющие собой молекулу нуклеиновой кислоты (ДНК или РНК), обёрнутой в белковую оболочку. Если вырезать из генетического материала вируса все те последовательности, которые вызывают возникновение заболеваний, то весь вирус также можно успешно превратить в «транспортное средство» для нашего гена.

Процесс внедрения ДНК в клетку, опосредованное вирусом, называется трансдукцией.
На практике чаще всего используют ретровирусы, аденовирусы и аденоассоциированные вирусы (AAV). Для начала стоит разобраться, каким должен быть идеальный кандидат для трансдукции среди вирусов. Критерии таковы, что он должен быть:

• стабилен;
• ёмок, то есть вмещать достаточное количество ДНК;
• инертным в отношении метаболических путей клетки;
• точным – в идеале, должен встраивать свой геном в конкретный локус генома ядра хозяина и др.

В реальной жизни очень сложно скомбинировать хотя бы несколько пунктов, так что обычно выбор происходит при рассмотрении каждого индивидуального случая в отдельности (рис.9).

Из всех трёх перечисленных наиболее используемых вирусов самыми безопасными и одновременно самыми точными являются AAV. Их почти что единственный недостаток – сравнительно малая ёмкость (ок. 4800 п.н.), которая, однако, оказывается достаточной для многих генов [5].

Помимо перечисленных методов достаточно часто генная терапия применяется в комбинации с клеточной: при этом сначала в питательную среду высаживают культуру определённых клеток человека, после этого тем или иным способом внедряют в клетки нужные гены, некоторое время культивируют и снова пересаживают в организм хозяина. В результате клеткам можно вернуть их нормальные свойства. Так, к примеру, модифицировали белые клетки крови человека (лейкоциты) при лейкемии (рис.10).

Судьба гена после его попадания в клетку

Так как с вирусными векторами всё более-менее ясно в силу их свойства более эффективно доставлять гены до конечной цели – ядра, то остановимся на судьбе плазмидного вектора.

На данном этапе мы добились того, что ДНК прошла первый большой барьер – цитоплазматическую мембрану клетки.

Далее, в комплексе с другими веществами, оболочкой или без, ей необходимо достигнуть клеточного ядра, чтобы специальный фермент – РНК-полимераза – синтезировала молекулу информационной РНК (иРНК) на матрице ДНК (этот процесс называется транскрипция). Только после этого иРНК выйдет в цитоплазму, образует комплекс с рибосомами и согласно генетическому коду синтезируется полипептид – например, фактор роста сосудов (VEGF), который начнёт выполнять определённую терапевтическую функцию (в данном случае – запустит процесс образования ветвлений сосудов в ткани, подверженной ишемии).

Что касается экспрессии введенных генов в требуемом типе клеток, то эта задача решается с помощью регуляторных элементов транскрипции. Ткань, в которой происходит экспрессия, часто определяется комбинацией специфичного для этой ткани энхансера («усиливающей» последовательности) с определенным промотором (последовательность нуклеотидов, с которой РНК-полимераза начинает синтез), который может быть индуцируемым [11, 12]. Известно, что активность генов можно модулировать in vivo внешними сигналами, а так как энхансеры могут работать с любым геном, то в вектора можно вводить еще инсуляторы, которые помогают энхансеру работать независимо от его положения и могут вести себя как функциональные барьеры между генами. Каждый энхансер содержит набор участков связывания активирующих или супрессирующих белковых факторов [11]. С помощью промоторов можно также регулировать уровень экспрессии генов. Например, есть металлотионеиновые или температурочувствительные промоторы; промоторы, управляемые гормонами.

Экспрессия гена зависит от его положения в геноме. В большинстве случаев существующие вирусные методы приводят лишь к случайному встраиванию гена в геном. Чтобы исключить такую зависимость, при конструировании векторов снабжают ген известными нуклеотидными последовательностями, которые позволяют гену экспрессироваться независимо от места его встраивания в геном.

Наиболее простой путь регуляции экспрессии трансгена – это обеспечение его индикаторным промотором, который чувствителен к физиологическому сигналу, такому, как выделение глюкозы или гипоксия. Такие «эндогенные» контролирующие системы могут быть полезны в некоторых ситуациях, таких, как осуществление глюкозозависимого контроля продукции инсулина. Более надежны и универсальны «экзогенные» системы контроля, когда экспрессия гена контролируется фармакологически введением маленькой лекарственной молекулы. В настоящее время известны 4 основные системы контроля — регулируемые тетрациклином (Tet), стероидом насекомых, экдизоном или его аналогами, антипрогестиновым препаратом майфпристоном (RU486) и химическими димеризаторами, такими, как рапамицин и его аналоги. Все они включают лекарственно зависимое привлечение домена активации транскрипции к основному промотору, ведущему нужный ген, но отличаются по механизмам этого привлечения [13].

Заключение

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства [14,15]. Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем – стабильность интеграции, регулируемая экспрессия, безопасность – все еще нуждаются в серьезных доработках.

Прежде всего, это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительному пребыванию внутри ядер). В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Генная и клеточная терапия открывает блестящие перспективы для восстановления утраченных клеток и тканей и генно-инженерного конструирования органов, что, несомненно, существенно расширит арсенал методов для медико-биологических исследований и создаст новые возможности для сохранения и продления жизни человека [16].

1. Трансфекция на химической основе может быть классифицирована на несколько видов: с использованием вещества циклодекстрина, полимеров, липосом или наночастиц (с или без химической или вирусной функционализации, т.е. модификации поверхности).
а) Один из самых дешевых методов – использование фосфата кальция. Он повышает эффективность включения ДНК в клетки в 10-100 раз. ДНК образует с кальцием прочный комплекс, что обеспечивает его эффективное поглощение. Недостаток – ядра достигает всего около 1 – 10% ДНК. Метод используется in vitro для переноса ДНК в клетки человека (рис.3);

3d схема отопления из полипропилена 3d c tvf jnjgktybz bp gjkbghjgbktyf 3d c tvf jnjgktybz bp gjkbghjgbktyf 3d c tvf jnjgktybz b

Большой архив видео — HDтор.ру

Смотреть видео онлайн в Full HD 1080p качестве.

Большой архив видео — HDтор.ру

Ссылка на основную публикацию